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C hemokines are a family of small, secreted pro-
teins involved in many biological processes
such as inflammation or viral infection (1, 2).

Chemokines induce directed chemotaxis in responsive
cells, hence the name chemotactic cytokines. In re-
sponse to inflammatory stimuli, such as bacterial infec-
tion or viruses, chemokines are released from a wide va-
riety of cells and function mainly as chemoattractants
for leukocytes, recruiting them from the blood to sites
of infection or damage. Some chemokines also play im-
portant roles in the immune system as they participate
in the migration and arrest of lymphocytes. In order to
identify strategies allowing for interference with chemo-
kine function, the molecular mechanisms by which che-
mokines operate have to be elucidated.

Once secreted, chemokines form a concentration gra-
dient that controls the direction and selectivity of leuko-
cyte cell migration. The interactions of chemokines and
G-protein-coupled transmembrane receptors expressed
on leukocyte cell surfaces mediate leukocyte migration.
In addition, glycosaminoglycans (GAGs) (3) are required
for chemokines to function in vivo (4). GAGs are linear,
highly sulfated, and heterogeneous polysaccharides
that are ubiquitously present on mammalian cell sur-
faces and within the extracellular matrix. Heparin and
heparan sulfate (5), chondroitin sulfate, keratan sulfate,
dermatan sulfate, and hyaluronic acid are members of
the GAG class of carbohydrates. GAGs consist of repeat-
ing disaccharide units that differ in the basic monosac-
charide sequence, the stereochemistry of the glycosidic
linkages, acetylation, and, most importantly, the N- and
O-sulfation pattern. Heparin and heparan sulfate are
structurally related GAGs, formed by disaccharide re-
peating units of D-glucosamine (GlcN) and either
L-iduronic acid (IdoA) or D-glucuronic acid (GlcA) linked
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ABSTRACT Glycosaminoglycans (GAGs), such as heparin or heparan sulfate,
are required for the in vivo function of chemokines. Chemokines play a crucial role
in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes
trafficking. GAG–chemokine interactions mediate cell migration and determine
which leukocyte subsets enter tissues. Identifying the exact GAC sequences that
bind to particular chemokines is key to understand chemokine function at the mo-
lecular level and develop strategies to interfere with chemokine-mediated pro-
cesses. Here, we characterize the heparin binding profiles of eight chemokines
(CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing
heparin microarrays containing a small library of synthetic heparin oligosacchar-
ides. The chemokines differ significantly in their interactions with heparin oligosac-
charides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccha-
ride containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does
not bind and CXCL12 binds only weakly. The carbohydrate microarray binding re-
sults were validated by surface plasmon resonance experiments. In vitro chemo-
taxis assays revealed that dendrimers coated with the fully sulfated heparin hex-
asaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12
or CCL19 was not affected. These in vitro homing assays indicate that multivalent
synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain
chemokine gradients by blocking the formation of a chemokine concentration gra-
dient on GAG endothelial chains. These findings are in agreement with prelimi-
nary in vivo measurements of circulating lymphocytes. The results presented here
contribute to the understanding of GAG–chemokine interactions, a first step to-
ward the design of novel drugs that modulate chemokine activity.
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via �1–4 and �1–4 glycosidic linkages, respectively.
Sulfation can occur at positions 2, 3, and 6 of the GlcN
unit and position 2 of IdoA/GlcA. The amino group of the
glucosamine residue may also be acetylated or unsub-
stituted. While heparin is found primarily in mast cells
and some hematopoietic cells, as part of the serglycin
proteoglycan, heparan sulfate is ubiquitously present on
cell surfaces, bound to a variety of core proteins (synde-
cans, glypicans, perlecan, agrin), and is also a com-
mon component of the extracellular matrix, having a
broader range of physiological targets than heparin. The
uronic acid residues in heparin are more often IdoA
(90%) than its C5 epimer GlcA (10%). Moreover, the pro-
totypical heparin disaccharide contains three sulfate
groups, rendering heparin one of the most acidic macro-
molecules in nature (2.7 sulfates per disaccharide on
average). On the other hand, heparan sulfate chains are
generally longer and more heterogeneous than those
of heparin. Heparan sulfate is richer in N-acetyl D-gluco-

samine (GlcNAc) and GlcA units, containing less
O-sulfates (one sulfate per disaccharide on average).

The conformational flexibility of the pyranose ring of
IdoA and the overall helical three-dimensional structure
of heparin/heparan sulfate chains increase the chemi-
cal complexity of these polysaccharides. Heparins
present an astounding level of structural diversity and
interact with a wide variety of proteins (6–10).

Endothelial heparan sulfate is involved in multiple
stages of an in vivo inflammatory response (11), such
as binding and presentation of chemokines at the lumi-
nal surface of the endothelium, and in chemokine
transcytosis. It is well established that leukocyte sub-
sets can be selectively recruited to inflammatory sites
by specific chemokines. It has been hypothesized that
heparan sulfate–chemokine interactions (12) might
control the migration of specific populations of cells
and determine which leukocyte subsets enter tissues
(13, 14). Since the exact composition of GAG chains de-
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Figure 1. Amine-functionalized heparin oligosaccharides 1–12 employed in the microarray experiments.
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pends on the type and location of the cell and the patho-
physiological state of the tissue and the organism, GAG
sequences may also control the activation of specific
chemokines.

Oligomerization, required to activate some chemo-
kines, contributes to the complexity of the chemokine
activation mechanism and function (15, 16). Further-
more, chemokines have the distinct potential to form
solid-phase versus soluble gradients that have differ-
ent functions in the tissue (17). Soluble heparin has
been shown to reduce inflammation levels by inhibit-
ing the interaction between chemokines and GAGs ex-
pressed on the endothelial cell surfaces. However, the
clinical use of heparin as anti-inflammatory drug is ham-
pered by the many side effects associated with this mol-
ecule including thrombocytopenia. Determining the
GAG-binding profiles of chemokines will be a first step
for the design of novel heparin mimetics with anti-
inflammatory activity and reduced side effects. These
molecules would act by blocking the formation of che-
mokine gradients on cell surfaces.

Carbohydrate microarray technology (18–24) has
been used recently for the rapid analysis of GAG–pro-
tein interactions (25–32). Here, we provide some valu-
able data on the binding affinities of eight chemokines
by using heparin chips containing a small library of syn-
thetic heparin oligosaccharides with different se-
quences and sulfation group distribution (31). These
chemokines exhibit greatly differing affinities for
heparin-like oligosaccharides. This selectivity of chemo-
kine–heparin interaction suggests that cell surface GAGs
contribute to the specific activation of chemokines and
thereby to the selective recruitment of leukocyte sub-
sets. The study provides structural information to guide
the synthesis of molecules aimed at controlling chemo-
kine function. The chip format enabled the characteriza-
tion of these sugar–protein interactions by using be-
tween pico- and femtomoles of both analyte and ligand.
The carbohydrate microarray platform is amenable to
high-throughput screening of thousands of binding
events on a single slide. Surface plasmon resonance
(SPR) experiments were employed to validate the array
binding results. In addition, in vitro homing assays indi-
cate that multivalent dendrimers displaying synthetic
GAG sequences inhibit the migration of lymphocytes in
the direction of certain chemokine gradients by blocking
the formation of a chemokine concentration gradient
on endothelial GAG chains.

RESULTS AND DISCUSSION
Screening the Binding Affinities of CCL21, CXCL13,

CXCL12, and CCL19 by Carbohydrate Microarrays. We
have recently reported the preparation and use of mi-
croarrays containing synthetic heparin oligosaccharides
(31). Briefly, a small library of amine-terminated sugar
probes was chemically synthesized (Figure 1) and im-
mobilized on N-hydroxysuccinimide (NHS)-activated
glass slides by using a robotic DNA printer. A deami-
nated heparin sample with an average molecular weight
of 5 kDa was also included in the microarray experi-
ments as positive control following functionalization
with 1,11-diamino-3,6,9-trioxaundecane by reductive
amination (33). CodeLink slides that are coated with a
hydrophilic polymer containing the activated esters gave
the highest signal/noise ratios after protein incubation
compared with other modes of immobilization: amine-
coated glass slides treated with tetraethylene glycol dis-
uccinimidyl disuccinate, aldehyde-coated glass slides,
or bovine serum albumin (BSA)-coated slides treated
with N,N=-disuccinimidyl carbonate (34). Covalent sugar
attachment was demonstrated by comparing amine-
terminated heparin oligosaccharides to sugars contain-
ing a blocked reducing end. The binding assay involved
initial incubation with the heparin-binding protein, fol-
lowed by detection of the bound protein with a typical
sandwich procedure involving primary and fluorescently
labeled secondary antibodies.

It is important to note that despite the impressive ad-
vances in the synthesis of heparin-like oligosaccharides
in the last decades, the preparation of this type of mol-
ecule is still challenging. Oligosaccharide structures
1–12 were selected based on sulfation patterns (31).
The library includes oligosaccharides found in heparin/
heparan sulfate as well as several “artificial” heparin-
like sequences, such as 2, 6, and 10, not found in the
natural polymers. For example, hexasaccharide 2 con-
tains the GlcNAc(6-OSO3)-IdoA(2-OSO3) repeating unit,
not found in heparin since C-5 epimerase does not act
on GlcNAc-GlcA sequences during the biosynthetic path-
way to heparin/heparan sulfate proteoglycans. Al-
though this synthetic library is limited in number and
structural diversity, it still provides useful information
on GAG–chemokine recognition.

Initially, we studied four chemokines (CCL21,
CXCL13, CXCL12, and CCL19), often regarded as consti-
tutive chemokines, that play a critical role in the immune
system by regulating the arrest and recruitment of lym-
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phocyte subsets and controlling lymphocyte–endothe-
lial cell recognition (35, 36). The microarray screening re-
sults obtained for these proteins are shown in Figure 2.
Antibodies did not bind spots lacking chemokines.
CCL21 (also called Exodus-2) bound to hexasacchar-
ides 1, 2, and 5, tetrasaccharide 7, and monosaccha-
ride 10 and weakly bound to 6 and 9. CXCL13, also
called BLC, exhibited decreased affinity overall, whereby
hexasaccharides 1 and 5 and tetrasaccharide 7 bound
best. Interestingly, fluorescent intensities for CCL21 are
around 15,000 units while signals for CXCL13 are
around 1000 units, using the same chemokine concen-
tration and considering spots with
the same sugar concentration (see
Figure 3, quantification at 400 �M
sugar concentration). These two
chemokines are thought to partici-
pate in the migration of different
lymphocyte subfamilies. CXCL13
strongly attracts B lymphocytes
while promoting migration of only
small numbers of T cells and mac-
rophages (36). On the other hand,
CCL21 is a highly efficacious che-
moattractant for lymphocytes with
preferential activity toward naive T
cells (37). Migration of lymphocyte
subsets, such as B cells, naive T
cells, and memory T cells, into dif-

ferent compartments of the secondary lymphoid or-
gans is essential for normal immune function. Our ar-
ray results suggest that significant overall differences in
the chemokine–GAG affinities could be involved in the
activation of a specific chemokine and therefore the re-
cruitment of a specific lymphocyte subfamily.

CXCL12 (also called SDF-1�) is a chemoattractant for
monocytes and lymphocytes that also inhibits infection
of T cells by HIV isolates that use the CXCR4 chemokine
receptor (38). Binding of CXCL12 to cell surface GAGs
has been demonstrated and the heparin-binding site
was identified on the crystal structure of the protein (39,
40). When CXCL12 was incubated with the heparin
chip, we only observed weak binding to hexasaccha-
ride 1. After incubation with CCL19 (also called MIP-3�),
no binding to the synthetic heparin oligosaccharides
was detected. Interestingly, CCL21 and CCL19, which
differ significantly in their interactions with heparin oli-
gosaccharides, use the same receptor, CCR7. CXCL12
and CCL19 bound, although weakly, to the 5 kDa hepa-
rin sample (data not shown), indicating that these two
chemokines bind heparin. These results suggest that
longer heparin oligosaccharides than those active for
CCL21 and CXCL13 or different sulfation patterns not in-
cluded in our chips are necessary for CXCL12 and CCL19
activation. It could also be hypothesized that GAG bind-
ing is not crucial for CXCL12 and CCL19 immobilization
on the endothelium.

SPR Measurements Help To Determine Binding
Affinities. The heparin microarray experiments indicate
that chemokines have different binding affinities for
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Figure 2. Fluorescence images of heparin microarrays containing oligosac-
charides 1–12 probed with CCL21, CXCL13, CXCL12, and CCL19 followed by
detection with primary and secondary antibodies. Four different concentra-
tions of sugar solutions, ranging from 16 �M to 2 mM from left to right were
employed. All samples were printed in replicates of 16 to produce a mi-
croarray containing 768 spots.
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specific heparin oligosaccharides. CCL21 strongly binds
to hexasaccharide 1, which contains the GlcNSO3(6-
OSO3)-IdoA(2-OSO3) repeating unit of the major se-
quence of heparin, while CXCL12 binds only weakly
and CCL19 does not bind the hexasaccharide at all. To
validate the microarray findings, SPR experiments were
conducted. SPR measurements use an optical biosensor
that rules out any artifact derived from the primary and
secondary antibody staining. The binding affinities of
heparin-like oligosaccharides or heparin mimetics are
usually measured by using an affinity assay where free
ligand competes with immobilized heparin for protein
(41–43). Heparin or heparan sulfate is usually immobi-
lized onto the sensor chip by biotinylation followed by
injection on a streptavidin sensor surface (44–48). The
use of synthetic amine-functionalized heparin oligosac-
charides allowed us to carry out SPR experiments by di-
rect immobilization of the sugar probes on the gold sur-
faces (49).

Hexasaccharide 1 was immobilized on an activated
CM5 gold chip by using a 1 mM solution of hexadecyl-
trimethylammonium chloride. Amide bond formation on
a CM5 chip is favored in a low-ionic-strength buffer at a
pH below the isoelectric point of the molecule that is im-
mobilized. Under these conditions, the ligand is concen-
trated on the chip surface by electrostatic attraction be-
tween the positively charged ligand and the negatively
charged carboxyl groups of the chip (50). Immobilization
of highly sulfated heparin oligosaccharides such as 1
by amine coupling is difficult since electrostatic precon-
centration is not possible due to the presence of nega-
tively charged sulfate groups. The procedure described
here overcomes this problem by using positively
charged micelles as ligand carriers.

SPR sensorgrams for the binding of chemokines to
immobilized 1 (Figure 4) afford additional information
on chemokine–heparin interactions in real time. The ris-
ing part of each curve corresponds to the association
of protein on the chip surface. The final portion of the
curves corresponds to the dissociation of protein after
the sample volume has finished and the buffer is flowed
on the sensor surface again. The SPR findings con-
firmed the array results. CCL21 bound hexasaccharide
1 best, followed by CXCL13. The dissociation curve for
CCL21 is very shallow, indicating a tight interaction. The
sensorgram for CXCL12 indicates weak binding as evi-
denced by a very steep dissociation curve. When CCL19
was flowed over the chip, no significant response was

observed even when 25 and 100 nM protein solutions
were used.

Binding Profiles of IL-8, CCL25, CCL28, and CXCL16.
After validating the array protocol by SPR measure-
ments, we determined the binding profiles of four more
chemokines: IL-8, CCL25, CCL28, and CXCL16 (Figure 5),
three of them (IL-8, CCL28, and CXCL16) are consid-
ered inducible chemokines. The prototypic chemokine
IL-8 (aka, CXCL8) is mainly involved in the activation and
migration of neutrophils (51, 52). IL-8 bound sugars 1,
2, 5, 6, 7, 9, and 10. Comparison of the fluorescence sig-
nals for hexasaccharides 3 and 6, which have the same
degree of sulfation, one sulfate group per disaccharide,
indicates that binding to the sulfated oligosaccharides
is not based on nonspecific charge–charge interactions.
Similar conclusions can be drawn from the comparison
of the fluorescence signals for monosaccharides 10 and

Figure 4. SPR sensorgrams that show the real-time binding of
different chemokines to a sensor chip presenting hexa-
saccharide 1. The protein sample was flowed over the gold sur-
face for 3 min at 100 nM (top) and 25 nM (bottom) in HBS-EP
buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA,
0.005% v/v surfactant P20). At the end of the sample injection,
the same buffer was flowed over the sensor surface for 6 min to
facilitate dissociation. The experiments are shown in duplicate.
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11. Binding to 10
can be explained by
the presence of
unique, unnatural
2,4-di-O-sulfation
pattern. In addition,
binding to hexasac-
charide 6 suggests
that the 2-O-sulfate
groups at IdoA units
play an important
role in this interac-

tion. Interestingly, the “artificial” IdoA(2-OSO3)-GlcNAc
sulfation pattern, not present in natural heparin/hepa-
ran sulfate, does not activate fibroblast growth factors
(FGF)-1, -2, or -4 (31). Further studies using more com-
plex libraries of synthetic sugars will be needed to deter-
mine the exact structural requirements for IL-8 recogni-
tion, ruling out the influence of the disaccharide
sequence (GlcN-IdoA for 3, and IdoA-GlcN for 6) on the
interaction. IL-8 bound oligosaccharides as short as dis-
accharide 9 and monosaccharide 10. Conclusions re-
garding the length of the oligosaccharide required for an
interaction should be taking cautiously. Simultaneous
protein binding to several immobilized sugar se-
quences, in a multivalent and cross-linking manner,
cannot be entirely ruled out. However, this mode of in-
teraction would be presumably more likely for spots
generated with higher sugar concentrations. No signifi-
cant differences between low and high density spots
were observed to support multivalent binding on the
plate. Irrespective of the mode of interaction, detection
of chemokine binding to small sequences provides in-
teresting information for the design of potential mimet-
ics such as heparin-like glycodendrimers (33).

Lindahl et al. (53) defined the IL-8-binding domain
of heparan sulfate by using naturally derived oligosac-
charides and reported that a minimal sequence com-
posed of 18–20 monosaccharide units is required for
binding to dimeric IL-8, which is the active form of this
protein. This sequence contains two N-sulfated domains
of six units, enriched in the trisulfated disaccharide
GlcNSO3(6-OSO3)-IdoA(2-OSO3) and separated by a
fully N-acetylated region. Although variations in the
source of oligosaccharides, synthetic vs isolated, may
account for these discrepancies, it is also conceivable
that the three-dimensional arrangement of sugars on
the microarray plates allows for the interaction of short

sequences such as disaccharide 9 with the binding
sites of each IL-8 monomer in a multivalent and coop-
erative interaction mode, resulting in IL-8 recognition as
proposed in the model introduced by Lindahl.

CCL25 (aka, TECK) (54) and CCL28 (aka, MEC) are
two closely related epithelial-expressed chemokines, in-
volved in the tissue-specific migration of lymphocytes
(55). CCL25 attracts dendritic cells, thymocytes, and ac-
tivated macrophages and is predominantly expressed
in the small intestine. Fluorescence signals were de-
tected for 1, 2, 5, and 7, while 3, 6, and 10 were bound
less well. CCL28, which is expressed at diverse muco-
sal sites such as colon and salivary and mammary
glands, presents a similar binding profile but with higher
overall affinity. CXCL16 is a transmembrane chemokine
that regulates movements of activated T cells in the
splenic red pulp and in peripheral tissues (56). After in-
cubation with CXCL16, binding to compounds 1, 7, and
10 was observed.

In summary, the binding profiles (Figure 3) indicate
that chemokines have different affinities for heparin oli-
gosaccharides. In general, inducible chemokines show
higher affinities than constitutive chemokines. Four of
the proteins we tested (CCL21, IL-8, CCL25, and CCL28)
bind oligosaccharides 1, 2, 5, and 7 indicating that tetra-
and hexasaccharides with at least two sulfate groups
per disaccharide constitute a general recognition motif
for these chemokines. However, significant differences
in the binding affinities are observed when considering
shorter and less sulfated sequences such as disaccha-
ride 9, monosaccharide 10, or hexasaccharides 3 and 6.
The observation that 6 is generally a better binder than
3 suggests the crucial role of 2-O-sulfate groups at IdoA
units for this interaction. Interestingly, the CXCL16 bind-
ing profile differs significantly with decreased affinity
across all structures and monosaccharide 10 as the best
binder. Binding was detected for 1 and 7, which con-
tain the trisulfated repeating unit GlcNSO3(6-OSO3)-
IdoA(2-OSO3), but not for 2 and 5, lacking N-sulfate and
6-O-sulfate groups, respectively, emphasizing the im-
portance of these groups for CXCL16 recognition.

In Vitro Chemotaxis Experiments. In vitro chemo-
taxis experiments were carried out to study the effect of
hexasaccharide 1 on lymphocyte migration toward a
chemokine gradient. Because human and mouse che-
mokine protein sequences are highly conserved, we
tested the in vitro effect of dendrimer binding on mu-
rine chemokine activity. Murine splenocytes and lymph
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Figure 5. Fluorescence images of heparin microarrays con-
taining oligosaccharides 1–12 probed with IL-8, CCL28,
CCL25, and CXCL16 followed by detection with primary
and secondary antibodies. Four different concentrations of
sugarsolutions, ranging from 16 �M to 2 mM from left to
right, were employed. All samples were printed in repli-
cates of 16 to produce a microarray containing 768 spots.
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node cells were placed in the upper chambers of tran-
swells, and cell migration toward an optimal concentra-
tion of murine CCL21 was quantified by fluorescence ac-
tivated cell sorting (FACS) (Figure 6, panel a). Results of
migration assays are presented as chemotactic index
values defined as cell migration toward chemokine di-
vided by the number of cells that migrated without che-
mokine. CCL21-mediated chemotaxis of the total cell
population, and T cells in particular, did not change sig-
nificantly upon addition of hexasaccharide 1. However,
when a polyamidoamine (PAMAM) dendrimer coated
with 1 (33) was co-incubated with the chemokine, there
was nearly complete inhibition of chemotaxis (Figure 6,
panel a) in a dose-dependent manner (Figure 6,
panel c). Dendrimers are nanosized, radially symmetric
molecules with well-defined, homogeneous, and mono-
disperse structure consisting of tree-like arms or
branches. Dendrimer coated with 1 was prepared by co-
valent coupling of 1 and generation 2.5 PAMAM den-
drimer, which contains 32 carboxylic acid groups. Eight
sugars were bound per dendrimer (25% loading) as de-
termined by NMR spectroscopy (33). Nonfunctionalized
dendrimer did not affect lymphocyte migration. These
results indicate that the multivalent display of heparin
oligosaccharides enhances their binding capacity by
mimicking the naturally occurring cell surface GAG
chains. Treatment with multivalent heparin conjugates
of defined structure may inhibit leukocyte chemotaxis
by displacement of GAG-bound chemokines from the

endothelium and extravascular sites of chemokine
deposition, blocking the formation of chemokine gradi-
ents on cell-surface GAGs. Preliminary in vivo assays in
mice showed subtle changes of blood cell populations
in the presence of dendrimer coated with 1 (data not
shown). After intravenous injection of dendrimer, a mod-
est and short-lived increase in the number of circulat-
ing lymphocytes was observed in the presence of
1-coated dendrimer. This effect is likely due to an inabil-
ity of lymphocytes to stick to the endothelium and en-
ter lymph nodes.

We also investigated the chemotaxis of murine T
cells to murine CCL19 and CXCL12 (Figure 6, panel b).
According to our microarray results, CCL21 strongly
binds to hexasaccharide 1, while CCL19 does not bind
at all and CXCL12 binds only weakly to the hexasaccha-
ride. In agreement with the microarray binding results,
hexasaccharide 1 and dendrimer coated with 1 failed to
inhibit chemotactic responses toward CCL19 and CX-
CL12, thus highlighting the selectivity of GAG–chemo-
kine interactions. This finding also may explain the
subtle in vivo effect of 1-coated dendrimer on lympho-
cyte migration since dendrimer coated with 1 is unable
to block the effects of CCL19 and CXCL12, which along
with CCL21 can also mediate homing to secondary lym-
phoid organs.

In summary, we prepared microarrays containing syn-
thetic heparin oligosaccharides by using a linker strat-
egy that is compatible with the protecting-group ma-
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Figure 6. Murine splenocytes and lymph node cells were incubated in transwells above media containing murine chemokine with or without 1 �M
hexasaccharide containing compound. CCL21 concentration was 150 nM (panel a), while both CCL19 and CXCL12 were used at 100 nM (panel b).
As in panels a and b, lymphocytes were plated in the presence of 150 nM mCCL21 and dilutions of hexasaccharide containing compound (panel c).
Quantification of migrated CD3� cells in the bottom well was compared between groups and displayed as chemotactic index (CD3� cells that
migrated towards chemokine divided by the number of CD3� cells that migrated without chemokine) where the background migration is 1. Data
are representative of experiments with five individual mice in which chemotaxis was analyzed in triplicate wells. The chemotactic response of the
total lymphocyte pool was equivalent to those of CD3� cells (data not shown).
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nipulations (57–59) required for the synthesis of the
highly sulfated oligosaccharides. We employed these
microarrays to provide valuable information about the
binding profiles of several chemokines that are impli-
cated in the selective recruitment of lymphocytes and
neutrophils and play a crucial role in the immune sys-
tem, inflammatory processes, and viral infection. The
chip format requires only pico- to femtomoles of both
analyte and ligand to characterize sugar–protein interac-
tions. Moreover, thousands of binding events can be
screened on a single slide, and the number is currently
limited only by access to synthetic heparin oligosaccha-
rides. The array data provides important information
about the structural requirements for GAG chains
needed to enable chemokine recognition. These stud-
ies aid the elucidation of chemokine function at the mo-

lecular level and the design of novel anti-inflammatory
drugs that block chemokine–GAG interactions. The SPR
measurements using amine-terminated synthetic sug-
ars directly immobilized on the gold sensor surface vali-
dated the array results. In vitro chemotaxis assays were
used to assess the effect of hexasaccharide 1 on lym-
phocyte migration mediated by specific chemokines.
Treatment with multivalent dendrimers containing 1
strongly reduced cell migration toward CCL21, suggest-
ing an important role of multivalent presentation in GAG–
chemokine interactions. Heparin-containing dendrim-
ers are an interesting starting point for the design of
chemokine-modulating agents based on well-defined
GAG oligosaccharides since they interfere with chemo-
kine function but lack the disadvantages of natural
heparin.

METHODS
Materials. All aqueous solutions were made from nanopure

water. Solutions used for chip hybridization were sterile filtered
through a 0.2 �m syringe filter prior to use. Recombinant human
CXCL12, recombinant human CCL19, recombinant human
CCL21, recombinant murine CXCL13, recombinant human
CCL28, recombinant human CCL25, and recombinant human
CXCL16 were purchased from PeproTech EC (London, U.K.). Rab-
bit anti-human CXCL12 was obtained from Aviva Systems Biol-
ogy. Polyclonal rabbit anti-mouse CXCL13 was purchased
fromeBioscience. Polyclonal rabbit anti-human CCL19 was pur-
chased from Abgent. Goat polyclonal anti-human CCL21 was ob-
tained from Abcam. Goat anti-human CCL28 and CCL25 were ob-
tained from R&D Systems. Rabbit anti-human CXCL16 was
purchased from PeproTech EC. Human IL-8 and rabbit anti-
human IL-8 were a kind gift of Dr. Antal Rot (Novartis, Austria).
Goat anti-rabbit IgG and rabbit anti-goat IgG labeled with Alexa
Fluor 546 dye were purchased from Molecular Probes and em-
ployed to detect the primary antibodies. CodeLink slides were
purchased from Amersham Biosciences. Microarrays were con-
structed using a Perkin-Elmer noncontact printer. HybriSlip hy-
bridization covers were purchased from Grace BioLabs (Bend,
OR). Slides were scanned using a LS400 scanner from Tecan
(Männedorf, Switzerland) and quantified using Scan Array Ex-
press (Perkin-Elmer) and Gene Spotter (MicroDiscovery GmbH,
Berlin, Germany) software. SPR measurements were performed
on a BIA-core 3000 (BIAcore, Uppsala, Sweden) operated by the
Biacore control software. HBS-EP buffer (10 mM HEPES, pH 7.4,
150 mM NaCl, 3 mM EDTA, 0.005% v/v surfactant P20) and CM5
chips were purchased from BIAcore. Starburst PAMAM den-
drimer generation 2.5 containing 32 sodium carboxylate sur-
face groups and deaminated heparin (5 kDa) were purchased
from Sigma-Aldrich.

Heparin Microarray Fabrication. Amine-functionalized heparin
oligosaccharides 1–12 (Figure 1) were prepared as described
previously (25, 31). Synthetic oligosaccharides were spatially ar-
rayed onto NHS-activated CodeLink slides by use of an auto-
mated arraying robot in sodium phosphate buffer (pH 9.0,
50 mM). Slides were printed in 50% relative humidity at 22 °C,
followed by incubation overnight in a saturated NaCl chamber
that provides an environment of 75% relative humidity. The ro-

bot delivered 1 nL of sugar solutions at four different concentra-
tions (2 mM, 400 �M, 80 �M, and 16 �M), and the resulting
spots had an average diameter of 200 �m with a distance of
500 �m between the centers of adjacent spots. All samples
were printed in replicates of 16. Slides were then washed three
times with water to remove the unbound carbohydrates from the
surface. Remaining succinimidyl groups were quenched by plac-
ing slides in a solution preheated to 50 °C that contained
100 mM ethanolamine in sodium phosphate buffer (pH 9.0,
50 mM) for 1 h. Slides were rinsed several times with distilled
water, dried by centrifugation, and stored in a desiccator prior to
use.

Microarray Binding Assay. The protein hybridization solutions
were prepared by diluting the stock solutions to a concentra-
tion of 20 �g mL–1 with PBS buffer (pH 7.5, 10 mM) containing
BSA (1%). Array incubations were performed as follows: 100 �L
of protein solution were placed between array slides and plain
coverslips and incubated for 1 h at RT. The arrays were washed
with PBS (pH 7.5, 10 mM) containing 1% Tween 20 and 0.1%
BSA and twice with water and then centrifuged for 5 min to en-
sure dryness. For detection of bound chemokines, arrays were
incubated with polyclonal rabbit or goat anti-chemokine anti-
bodies (20 �g mL–1) and then washed as described above. Fi-
nally, AlexaFluor-546-labeled anti-rabbit or anti-goat IgG (20 �g
mL–1) was used to detect bound rabbit or goat primary anti-
bodies, respectively, and washed as above.

Image Acquisition and Signal Processing. Heparin arrays were
scanned by using a LS400 scanner, and fluorescence intensi-
ties from these scans were integrated on Scan Array Express and
Gen Spotter software. Signal to background was typically �50:1.
The local background was subtracted from the hybridization sig-
nal of each separate spot, and the mean intensity of each spot
was used for data analysis. Spot finding was automatically per-
formed, followed by manual fitting to correct for spot deviations.
Data presented are the average of 16 spots on the same array
at 400 �M sugar concentration; errors are the standard devia-
tions for each measurement.

SPR Measurements: Immobilization of Hexasaccharide 1 on a
CM5 Sensor Chip. Hexasaccharide 1 was covalently bound to
the sensor surface via the terminal primary amino group using
the following protocol. HBS-EP was employed as running buffer.
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The carboxymethylated dextran matrix (CM5 chip) was first acti-
vated at a flow rate of 5 �L min�1 by using a 15 min (75 �L) in-
jection pulse of an aqueous solution containing NHS (0.05 M)
and N-ethyl-N=-(dimethylaminopropyl) carbodiimide (EDC,
0.2 M). Next, a 50 �L injection of 1 (500 �g mL–1) in 5 mM so-
dium phosphate buffer (pH 7.4) containing 1 M NaCl was flowed
over the activated surface followed by an additional 50 �L injec-
tion of 1 (500 �g mL–1) in 5 mM sodium phosphate buffer
(pH 7.4) containing 1 mM hexadecyltrimethylammonium chlo-
ride. Remaining activated sites on the chip surface were blocked
with a 35 �L injection of 1 M ethanolamine hydrochloride solu-
tion (pH 8.5). A second flow cell of the CM5 chip was used as
negative control after activation with EDC and NHS followed by
treatment with ethanolamine solution as described above. An
increase of approximately 300 response units (RU) was detected
in the flow cell containing 1 when compared with the control
cell.

Measurement of Chemokine–Hexasaccharide 1 Interactions on
Gold Chips. A 30 �L injection of chemokine solution (25 nM and
100 nM in HBS-EP buffer) was made at a flow rate of 10 �L
min�1. At the end of the sample injection, the same buffer was
flowed over the sensor surface for 6 min to facilitate dissocia-
tion. Then, the chip surface was regenerated for the next sample
by injecting a 50 �L pulse of 4 M NaCl at 50 �L min�1. The re-
sponse was monitored as a function of time to result in a sen-
sorgram. All experiments were carried out at least in duplicate.

Chemotaxis Assay. Spleen and lymph node cells (5 � 105

cells) obtained from 6–8 week old C57BL/6 mice were seeded
onto 5.0 �m pore Transwell inserts (Costar, Corning Inc.) in a 24-
well plate Falcon tissue culture dish in 100 �L of Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 2% fetal
bovine serum (FBS). The lower chamber was filled with 0.6 mL of
DMEM supplemented with 2% FBS containing either recombi-
nant murine CXCL12, recombinant murine CCL21, or murine
CCL19 (R&D Systems) at the indicated concentrations. Cultures
were carried out in an humidified incubator at 37 °C and 5% CO2

for 2 h. At that time, transwell inserts were removed, and the me-
dia from the bottom well was collected for immunostaining. Col-
lected cells were stained in PBS with 2% FBS and 20 mM EDTA.
Anti-mouse CD3 was obtained from BD Pharmingen. Samples
were resuspended in identical volumes and events acquired for
1 min on a FACSCanto (BDBiosciences).
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